MAGLUMI C-Peptide (CLIA)

130205001M

100

Shenzhen New Industries **Biomedical Engineering Co., Ltd** 4/F,Wearnes Tech Bldg, Science & Industry Park. Nanshan, Shenzhen, 518057CHINA Tel. + 86-755-86028224 Fax.+ 86-755-26654850

Lotus Global Co., Ltd 15 Alexandra Road I ondon UK NW8 0DP Tel. + 44-20-75868010 Fax.+ 44-20-79006187

FOR PROFESSIONAL USE ONLY Store at 2-8 °C

COMPLETELY READ THE INSTRUCTIONS BEFORE PROCEEDING

SYMBOLS EXPLANATIONS

Authorized Representative in the European community Manufacturer

Consult instructions for use

Contents of kit

I OT

In vitro diagnostic medical device

Batch code

Catalogue number

Use by Temperature limitation (store at 2-8°C) Sufficient for

Keep away from sunlight

Keep upright for storage

INTENDED USE

The kit has been designed for the quantitative determination of C-Peptide in human serum.

The method can be used for samples over the range of 0.01-20.0ng/ml.

The test has to be performed on the Fully-auto chemiluminescence immunoassay (CLIA) analyzer MAGLUMI (Including Maglumi 600, Maglumi 1000, Maglumi 1000 Plus, Maglumi 2000, Maglumi 2000 Plus, Maglumi 3000 and Maglumi 4000)

SUMMARY AND EXPLANATION OF THE TEST

C-peptide is a polypeptide (31 amino acid residues) with a molecular weight of 3,018 Dalton. It is part of the proinsulin в molecule with the followina structure: chain -Arg-Arg-C-peptide-Lys-Arg-A chain.

In the pancreatic B-cells, proinsulin is enzymatically cleaved into insulin (A chain and B chain) and the C-peptide molecule. Both are simultaneously secreted at equimolar concentrations into blood. Insulin has a rather short half-life of approx. 5 minutes, while the half-life of C-peptide is approx. 30 minutes. Therefore, the molar ratio between C-peptide and insulin in peripheral blood ranges between approx. 3:1 and 5:1. C-peptide is excreted via the kidney, therefore patients with renal dysfunction exhibit a longer half-life and elevated basal values.

Determination of C-peptide is useful in all cases in which the insulin assay would normally be used, in which, however, the presence of circulating insulin antibodies and exogenous insulin therapy interfere with the insulin immunoassay.

Determination of C-peptide is indicated:

In diabetics during insulin treatment to determine the residual secretory function of B-cells in order to decide if a switch to other antidiabetics or a reduction of insulin dosage is possible.

For the diagnosis of endogenous hyperinsulinism, e.g. insulinoma, in connection with the suppression test, or postoperative monitoring of patients with total pancreatectomy.

In patients in who concealed injections of insulin are suspected but cannot be proven. In such cases, insulin levels are very high while C-peptide values are low or undetectable, or monitoring patients with cyclic B-cell function, or diagnosis and monitoring of a remission phase in juvenile diabetics.

PRINCIPLE OF THE TEST

Sandwich immunoluminometric assay:

Use an anti C-Peptide monoclonal antibody to label ABEI, magnetic microbeads coated with anti C-Peptide monoclonal antibody. Sample, Calibrator or Control with ABEI Label and magnetic microbeads are mixed thoroughly and incubated at 37°C, forming a sandwich; After sediment in a magnetic field, then cycle washing for 1 time. Subsequently, the starter reagents are added and a flash chemiluminescent reaction is initiated. The light signal is measured by a photomultiplier as RLU within 3 seconds and is proportional to the concentration of C-Peptide present in samples.

Reagent Integral for 100 determinations Nano magnetic microbeads: microbeads coated with sheep anti-C-Peptide monoclonal 2.5ml antibody, TRIS buffer, 0.2%NaN₃.

Calibrator Low: bovine serum, 0.2%NaN ₃ .	2.5ml	
Calibrator High: bovine serum, 0.2%NaN ₃	2.5ml	
ABEI Label: anti-C-Peptide monoclonal		
antibody labeled ABEI, containing BSA, 7.5ml		
0.2%NaN ₃ .		
All reagents are provided ready-to-use.		

Reagent Vials in kit box		
Internal Quality Control: containing BSA,		
0.2%NaN ₃ . (target value refer to Quality	2.0ml	
Control Information date sheet)		

Internal quality control is only applicable with MAGLUMI system. Instructions for use and target value refer to Quality Control Information date sheet. User needs to judge results with their own standards and knowledge.

Accessories Required But Not Provided

MAGLUMI Reaction Module	REF: 630003
MAGLUMI Starter 1+2	REF: 130299004M
MAGLUMI Wash Concentrate	REF: 130299005M
MAGLUMI Light Check	REF: 130299006M

Please order accessories from SNIBE or our representative.

Preparation of the Reagent Integral

Before the sealing is removed, gentle and careful horizontal shaking of the Reagent Integral is essential (avoid foam formation!) Remove the sealing and turn the small wheel of the magnetic microbeads compartment to and fro, until the colour of the suspension has changed into brown. Place the Integral into the reagent area and let it stand there for 30 min. During this time, the magnetic microbeads are automatically agitated and completely resuspended.

Do not interchange integral component from different reagents or lots!

Storage and Stability

• Sealed: Stored at 2-8°C until the expiry date.

· Opened: Stable for 4 weeks. To ensure the best kit performance, it is recommended to place opened kits in the refrigerator if it's not going to be used on board during the next 12 hours.

CALIBRATION AND TRACEABILITY

1)Traceability

To perform an accurate calibration, we have provided the test calibrators standardized against the International Ref. Reagent C-Peptide of Human Insulin NIBSC code: 84/510.

2) 2-Point Recalibration

Via the measurement of calibrators, the predefined master curve is adjusted (recalibrated) to a new, instrument-specific measurement level with each calibration.

3) Frequency of Recalibration

- After each exchange of lots (Reagent Integral or Starter Reagents).
- Every week and/or each time a new Integral is used (recommendation).
- · After each servicing of the Fully-auto chemiluminescence immunoassay (CLIA) analyzer MAGLUMI.
- 022130729-V2.3-EN

- If controls are beyond the expected range.
- The room temperature has changed more than 5 $^\circ\mathrm{C}$ (recommendation).

SPECIMEN COLLECTION AND PREPARATION

Sample material: serum

Collect 5.0ml venous blood into Blood Collection Tube. Standing at room temperature, centrifuging, separating serum part.

The serum sample is stable for up to 6 hours at 2-8 $^\circ\!\mathbb{C}.$ More than 6 hours, please packed, -20 $^{\circ}$ C can be stored for 30 days.

Avoid repeated freezing and thawing, the serum sample can be only frozen and thawed two times. Stored samples should be thoroughly mixed prior to use (Vortex mixer).

Please ask local representative of SNIBE for more details if you have any doubt.

Vacuum Tubes

(a) Blank tubes are recommended type for collecting samples. (b) Please ask SNIBE for advice if special additive must be used in sample collecting.

Specimen Conditions

- Do not use specimens with the following conditions: (a) heat-inactivated specimens;
- (b) Cadaver specimens or body fluids other than human serum:
- (c) Obvious microbial contamination.
- Use caution when handling patient specimens to prevent cross contamination. Use of disposable pipettes or pipette tips is recommended.
- Inspect all samples for bubbles. Remove bubbles with an applicator stick prior to analysis. Use a new applicator stick for each sample to prevent cross contamination.
- · Serum specimens should be free of fibrin, red blood cells or other particulate matter.
- Ensure that complete clot formation in serum specimens has taken place prior to centrifugation. Some specimens, especially those from patients receiving anticoagulant or thrombolytic therapy, may exhibit increased clotting time. If the specimen is centrifuged before a complete clot forms, the presence of fibrin may cause erroneous results.

Preparation for Analysis

- Patient specimens with a cloudy or turbid appearance must be centrifuged prior to testing. Following centrifugation, avoid the lipid layer (if present) when pipetting the specimen into a sample cup or secondary tube.
- Specimens must be mixed thoroughly after thawing by low speed vortexing or by gently inverting, and centrifuged prior to use to remove red blood cells or particulate matter to ensure consistency in the results. Multiple freeze-thaw cycles of specimens should be avoided.
- All samples (patient specimens or controls) should be tested within 3 hours of being placed on board the MAGLUMI System. Refer to the SNIBE service for a more detailed discussion of onboard sample storage constraints.

Storage

- If testing will be delayed for more than 8 hours, remove serum from the serum separator, red blood cells or clot. Specimens removed from the separator gel, cells or clot may be stored up to 6 hours at 2-8°C.
- Specimens can be stored up to 30 days frozen at -20°C or colder.

Shipping

Before shipping specimens, it is recommended that specimens be removed from the serum separator, red blood cells or clot. When shipped, specimens must be packaged and labeled in compliance with applicable state, federal and international regulations covering the transport of clinical specimens and infectious substances. Specimens must be shipped frozen (dry ice). Do not exceed the storage time limitations identified in this section of the package insert.

WARNING AND PRECAUTIONS FOR USERS

- For use in *IN-VITRO* diagnostic procedures only.
- Package insert instructions must be carefully followed. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert.

Safety Precautions

CAUTION: This product requires the handling of human specimens.

- The calibrators in this kit are prepared from bovine serum products. However, because no test method can offer complete assurance that HIV, Hepatitis B Virus or other infectious agents are absent; these reagents should be considered a potential biohazard and handled with the same precautions as applied to any serum or plasma specimen.
- All samples, biological reagents and materials used in the assay must be considered potentially able to transmit infectious agents. They should therefore be disposed of in accordance with the prevailing regulations and guidelines of the agencies holding jurisdiction over the laboratory, and the regulations of each country. Disposable materials must be incinerated; liquid waste must be decontaminated with sodium hypochlorite at a final concentration of 5% for at least half an hour. Any materials to be reused must be autoclaved using an overkill approach. A minimum of one hour at 121°C is usually considered adequate, though the users must check the effectiveness of their decontamination cycle by initially validating it and routinely using biological indicators.
- It is recommended that all human sourced materials be considered potentially infectious and handled in accordance with the OSHA Standard on Blood borne Pathogens13. Biosafety Level 214 or other appropriate biosafety practices should be used for materials that contain or are suspected of containing infectious agents.
- This product contains Sodium Azide; this material and its container must be disposed of in a safe way.
- Safety data sheets are available on request.

Handling Precautions

- Do not use reagent kits beyond the expiration date.
- Do not mix reagents from different reagent kits.
- Prior to loading the Reagent Kit on the system for the first time, the microbeads requires mixing to re-suspend microbeads that have settled during shipment.
- For microbeads mixing instructions, refer to the KIT COMPONENTS, Preparation of the Reagent Integral section of this package insert.
- To avoid contamination, wear clean gloves when operating with a reagent kit and sample.
- Over time, residual liquids may dry on the kit surface, please pay attention the silicon film still exists on the surface of the kit.
- For a detailed discussion of handling precautions during system operation, refer to the SNIBE service information.

TEST PROCEDURE

To ensure proper test performance, strictly adhere to the operating instructions of the Fully-auto chemiluminescence immunoassay (CLIA) analyzer MAGLUMI. Each test parameter is identified via a RFID tag on the Reagent Integral. For further information please refer to the Fully-auto chemiluminescence immunoassay (CLIA) 022130729-V2.3-EN

analyzer MAGLUMI Operating Instructions.

•	
20µl	Sample, calibrator
+50µl	ABEI Label
+20µl	Nano magnetic microbeads
15 min	Incubation
400µl	Cycle washing
3 s	Measurement

DILUTION

Sample dilution by analyzer is not available in this reagent kit. Samples with concentrations above the measuring range can be diluted manually. After manual dilution, multiply the result by the dilution factor.

Please choose applicable diluents or ask SNIBE for advice before manual dilution must be processed.

QUALITY CONTROL

- · Observe quality control guidelines for medical laboratories
- Use suitable controls for in-house quality control. Controls should be run at least once every 24 hours when the test is in use, once per reagent kit and after every calibration. The control intervals should be adapted to each laboratory's individual requirements. Values obtained should fall within the defined ranges. Each laboratory should establish guidelines for corrective measures to be taken if values fall outside the range.

LIMITATIONS OF THE PROCEDURE

1) Limitations

Patients with renal malfunction show elevated C-peptide values. Food intake or therapies with β -cell stimulating drugs (e.g. corticosteroids) increase C-peptide secretion.

Fasting as well as $\beta\text{-cell}$ inhibiting substances such as insulin or $\alpha\text{-sympathomimetic}$ drugs decrease C-peptide concentration.

Therefore, C-peptide assay values may only be interpreted in context with clinical picture and other diagnostic procedures.

2) Interfering Substances

No interference with test results is seen by concentrations of bilirubin<50mg/dl, haemoglobin<300mg/dl or triglycerides< 2000mg/dl.

3) HAMA

Patient samples containing human anti-mouse antibodies (HAMA) may give falsely elevated or decreased values. Although HAMA-neutralising agents are added, extremely high HAMA serum concentrations may occasionally influence results.

4) High-Dose Hook

No high-dose hook effect was seen for C-P concentrations up to 200ng/ml.

ABEI is a synthetic organic compound, not a substance in serum, so there is no interferon which can affect the result; If the operation is in accordance with the user's manual, and the control is within the range of the user's manual, there is no need of performing a validation assay.

RESULTS

1) Calculation of Results

The analyzer automatically calculates the C-Peptide concentration in each sample by means of a calibration curve which is generated by a 2-point calibration master curve procedure. The results are expressed in ng/ml. For further information please refer to the Fully-auto chemiluminescence immunoassay (CLIA) analyzer MAGLUMI Operating Instructions.

2) Interpretation of Results

• Results of study in clinical centers with group of individuals, 95% of the results were:0.3-3.73ng/ml (before meal).

• Results may differ between laboratories due to variations in population and test method. If necessary, each laboratory should establish its own reference range.

PERFORMANCE CHARACTERISTICS

1) Precision

Intra-assay coefficient of variation was evaluated on 3 different levels of control serum repeatedly measured 20 times in the same run, calculating the coefficient of variation.

	Intra-assay precision			
	Control	Mean(ng/ml)	SD(ng/ml)	CV%
	Level 1	19.25	1.09	5.67
	Level 2	47.25	2.70	5.72
_	Level 3	152.35	7.82	5.13

Inter-assay coefficient of variation was evaluated on three batches of kits. Repeatedly measured 3 different levels of control serum 21 times, calculating the coefficient of variation.

Inter-assay precision			
Control	Mean(ng/ml)	SD(ng/ml)	CV%
Level 1	21.56	1.87	8.69
Level 2	48.56	4.38	9.01
Level 3	158.42	13.54	8.55

2) Analytical Sensitivity

The sensitivity is defined as the concentration of C-Peptide equivalent to the mean RLU of 20 replicates of the zero standard plus two standard deviations corresponding to the concentration from the standard curve. The sensitivity is typically less than 0.01ng/ml.

3) Specificity

The specificity of the C-Peptide assay system was assessed by measuring the apparent response of the assay to various potentially cross reactive analytes.

Compound	Concentration	Cross reactivity
Insulin	200µIU/ml	1%

4) Recovery

Consider calibrator high of known concentration as a sample, dilute it by 1:2 ratios with diluents, and measure its diluted concentration for 10 times. Then calculate the recovery of measured concentration and expected concentration. The recovery should be within 90% -110%.

Expected	Mean Measuring	Recovery
4.728ng/ml	4.913ng/ml	104%

5) Linearity

Use C-Peptide calibrator to prepare the six-point standard curve, measuring all points' RLU except point A, and then do four-parameter linear fitting in double logarithm coordinate, the absolute linear correlation coefficient(r) should be bigger than 0.9800.

Calibrator	Concentration	Absolute linear
Point	ng/ml	correlation coefficient (r)
А	0	
В	0.5	r=0.9979
С	2	
D	4	
E	8	
F	20	

6) Method comparison

A comparison of MAGLUMI C-Peptide (y) with a commercially available C-Peptide test (x) using clinical samples gave the following correlations (ng/ml):

Linear regression y = 0.769x+0.2092 r = 0.9507 022130729-V2.3-EN Number of samples measured: 100

The sample concentrations were between 0.06 and 4.28 ng/ml.

REFERENCES

- Pagana, K. D. & Pagana, T. J. (© 2007). Mosby's Diagnostic and Laboratory Test Reference 8th Edition: Mosby, Inc., Saint Louis, MO. Pp 314-315.
- Clarke, W. and Dufour, D. R., Editors (© 2006). Contemporary Practice in Clinical Chemistry: AACC Press, Washington, DC. Pp 290-291.
- Wu, A. (© 2006). Tietz Clinical Guide to Laboratory Tests, 4th Edition: Saunders Elsevier, St. Louis, MO. Pp 186-189.
- 4. Clark PM. Assays for insulin, proinsulin(s) and C-peptide. Ann Clin Biochem 1999;36(5):541-564.
- Sacks DB. Chapter 24: Carbohydrates. In: Burtis CA, Ashwood ER (eds). Tietz Textbook of Clinical Chemistry, WB Saunders, Philadelphia, 3rd edition; 1999:750-808.
- Thomas L. Chapter 3.7: Insulin, C-peptide, proinsulin. In: Thomas L(ed.) Clinical Laboratory Diagnostics, TH-Books, Frankfurt, 1st English edition 1998:149-155, deutsche Auflage 1998:152-158.
- Fiedler H. Fundamentals in Laboratory Medicine: Diabetes mellitus and Metabolic Syndrom. Brochure Roche Diagnostics 2001; English Cat. No. 1951777, German Best.-Nr. 1951769.
- Johansson J, Ekberg K, Shafqat J, Henriksson M, Chibalin A,Wahren J, Jörnvall H. Molecular effects of proinsulin C-peptide.Biochem Biophys Res Commun 2002;295:1035-1040.
- Kobayashi T, Maruyama T, Shimada A, Kasuga A, Kanantsuka A, Takeil,etal.InsulinInterventiontoPreserve hv Cells in Slowly Progressive Insulin-Dependent (Type 1) Diabetes Mellitus. Ann N Y Acad Sci 2002;958(4):117-130.
- Forst T, Rave K, Pfuetzner A, Buchholz R, Pohlmann T, Löbig M, Heinemann L. Effect of C-Peptide on Glucose Metabolism in Patients With Type 1 Diabetes. Diabetes Care 2002;25(6):1096-1097.
- Shapiro AMJ. Islet Transplants and Impact on Secondary Diabetic Complications: Does C-Peptide Protect the Kidney? J Am Nephrol 2003;14:2214-2216.
- Sima AAF. C-peptide and diabetic neuropathy. Expert Opin Investig Drugs 2003;12(9)1471-1488.Little, R. et. al. (2008 April 17). Standardization of C-Peptide Measurements. Clinical Chemistry. 2008;54:1023-1026.
- Peter H. Winocour, Julie Jeacock, Parmamjeet Kalsi, Christopher Gordon, David C. Anderson ,Diabetes Research and Clinical Practice, Volume 9, Issue 1,1990, Pages 23-35.
- Henry's Clinical Diagnosis and Management by Laboratory Methods. 21st ed. McPherson R, Pincus M, eds. Philadelphia, PA: Saunders Elsevier: 2007, Pp 186-187.